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' INTRODUCTION 

In  past  meetings of the  Refractory 
Composites Working Group representa- 
t i v e s  of the L e w i s  Research Center have 
described t h e i r  work on bulk refractory 
metals and coatings f o r  superalloys and 
refractory metals. A large percentage 
of the work being done a t  Lewis i n  the 

-$ Materials and Structures Division i s  
I oriented toward the ultimate use i n  ad- 

vanced gas turbines. This is a l so  t r u e  
f o r  the f ibe r  composite materials re-  
search i n  our DLvision. 
t he  past the  composite materials work 
a t  L e w i s  w a s  r e s t r i c t ed  t o  f iber -  
reinforced metal matrix material, work 
is  being conducted today i n  the  
Structural  Mechanics and Polymers 
Branch on f i b e r  reinforced p l a s t i c  ma- 
t r i ce s .  No attempt w i l l  be made i n  
t h i s  paper t o  describe t h i s  work but  
ra ther  the  continued e f fo r t s  of the  
Fiber Metallurgy Section of the 
Composite Materials Branch w i l l  be de- 
scribed. The areas t o  be described 
are: Model systems, engineering mate- 
rials, whisker composites, polycrystal- 
l i n e  ceraniics, and the direct ion of 
future  programs. 

8 

Although i n  

MODEL SYSTEMS STUDIES, 

I n  recent years the  strengthening 
mechanisms associated with f i b e r  re in-  
forced metall ic materials have been 
summarized and presented in numerous 
a r t i c l e s  and textbooks. The l a w  of 
mi2tures w a s  first shown t o  represent 
strength relationships for metal f iber -  

* metal matrix composites i n  a 1959 pub- 
" l i ca t ion  (1). This work was later ex- 

panded t o  include parameters other than 
t e n s i l e  s t rength ( 2  and 3). 

tungsten f ibe r s  and a copper matrix and 
the  f a c t  t h a t  t he  composite strength 
var ies  as the  volume percent of tung- 
s ten  f ibe r s  increases f o r  both continu- 

Fig- 
* ure l ( a )  and (b) shows the  s t rength of 

ous and discontinuous fzber composites. 
The strength of such composites was 
found t o  be represented by 

where 

(J ultimate t e n s i l e  strength 

A area f rac t ion  or volume f rac t ion  
when unity length is  considered 
and + + & = A c = l  

0; stress on matrix, taken from 
s t r e s s - s t r a in  curve, a t  equiva- 
l en t  s t r a i n  t o  t h a t  a t  which 
ultimate t e n s i l e  s t rength of 
f i b e r  is achieved 

and the  subscripts a r e  

c composite 

f fiber 

m matrix 

A modification of t h i s  equation t o  ac- 
count fo r  end e f f ec t s  of short  length 
f ibe r s  has been given i n  (4;). 
equation is  as follows: 

The 

where 

(7 t e n s i l e  strength 

V f  volume f rac t ion  of f ibe r s  or 
same as Af of eq. (1) 

cT* same as t h a t  fo r  eq. (1) 

(1 - Vf) vm, volume fract ion of ma- 
t r i x  or % of eq. (1) 
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L ac tua l  fiber length 

fiber length needed t o  permit 
fiber to contribute its t e n s i l e  
strength t o  composite, t h a t  is, 
c r i t i c a l  fiber length 

LC 
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, Other modifications t o  account for  deg- 
radation of the  fiber involve multiply- 
ing the  f i b e r  s t rength by a fac tor  t o  
account f o r  the  reduction i n  the  
strength of the fiber during fabrica- 
t ion.  Restraint  e f f ec t s  and possibly 
other synergis t ic  e f f ec t s  w i l l  cer- 
t a i n l y b e  evident as more s tudies  are 
made but the bas ic  working calculations 
are based On the l a w  of mixtures equa- 
%Lon, as  simple as  it is. It is a l s o  
important t o  know t h a t  the  high temper- 
ature behavior of composites i n  t e n s i l e  
tests are very similar t o  those a t  
lower temperatures, a t  l e a s t  f o r  the 
model materials selected f o r  the Lewis 
studies.  The next figure 2 ( 5 )  shows 
sQme high temperature t e n s i l e  test  data 
f o r  tungsten-copper matrix composites. 
The d u c t i l i t i e s  of these materials (re- 
duction i n  area:> are shown i n  f igure 3 
f o r  the same range of t e s t  tempera; 

. tures .  Note t h a t  reduction i n  area 
values are appreciable over the e n t i r e  
tes t  temperature range, 

In some high temperature t e n s i l e  
tests of discontinuous tungsten fiber 
reinforced copper matrix mpterial, it 
became very evident that  two fqctors; 
length-to-diameter r a t i o  and f i b e r  
orientation, w e r e  very important i n  in- 
fluencing the  strength of the compos- 

matrix qdditive i n  one set of compos- 
ites, only the work on the  copper model 
system w i l l  be described. Figure 4 
shows the  strength of composites a t  
temperatures of 3oOo, 900°, and 1500° F 
plot ted against  the  volume percents of 
the fibers i n  the composite ( 6 ) .  
upper curves represent l a w  of mixkures 
strengths f o r  composites containing 
continuous length fibers, ' from R e f .  5. 
Curves with the  dashed l i nes  represent 
skrengths of composites with various 
length t o  diameter r a t i o  fibers. It 
can be seen tha t ,  a t  the  higher temper- 
atures, as the length to diameter r a t i o  
decreases from continuous length fiber 

, i t e s .  Although chromium was uqed as a 

The 

to 200/1 or 100/1, the  s t rength of t he  
composites go well  below the l a w  of 
mixtures l i nes  f o r  continuous fibers . 
The l ines  drawn through the  points in- 
cidentally represent calculated l i nes  
using equation (2)  given previously. 
These f igures  a l so  indicate, by the 
closed versus the  open data points, 
whether the failures of t he  specimens 
were t e n s i l e  or shear fa i lures .  Those 
data points half so l id  and half  open 
represent a combination of fiber ten- 
s i le  failure and matrix shear. The 
shear failure8 (the so l id  points) a r e  
well below the calculated l i ne .  The 
data points representing t e n s i l e  f a i l -  
ures f a l l  close t o  the calculated l ines .  
It was observed tha t  those materials 
t ha t  failed by.shear contained fibers 
wh$ch were misoriented frm the axis 
of the specimen by onLy 3-4'. Speci- 
mens that had tendble failures con- 
$ained f ibe r s  a l ined within 2 O  of the 
specimen axis. Pigure 5 shows a blow- 
up of some of the d e t a i l s  presented i n  
figure 4 for  the materiel  with a fiber 
length t o  diameter r a t i o  of 100 tested 
a t  1500' F. The angle of misorienta- 
t i on  a t  which a failure changes ffom 
tengi le  t o  shear, is termed the  c r i t i -  
c a l  angle and was determined t o  be 3O 
using the  following equation : 

, 

1 22 cpcr = - a r c  s i n  - 
2 6, 

L 

crC composite t e n s i l e  ,strengkh ( as- 
suming ax ia l ly  &lined i'ibers) 

cr applied stress on composite 

cp angle between fiber and t e n s i l e  
axis of specinien 

2 shear strength of matrix or of 
i n t e r f w e  

$his equation differs from t h a t  pre- 
sented i n  R e f s .  4 and 7. For the model 
assumed i n  R e f .  6, CTc = u ra ther  than 
uC = 5 cos2cp for  the d i f fe ren t  model of 
Refs. 4 and 7. The volume percent of f i -  
bers i n  a composite is  constant w i t h  f i -  
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ber  misalinement f o r  the model Q f ’ R e f .  6. 
The important thing t o  be concerned with 
here i s  t h a t  the f ibe r  orientation i n  
the  discontinuous composites was ex- 
tremely c r i t i c a l  a t  elevated tempera- 
tures .  It can be seen from the  equa- 
t i o n  t h a t  by increasing the  shear 
s t rength of the matrix (T) the  c r i t i c a l  
angle w i l l  be made larger  and t h i s  w i l l  
permit a greater sa fe ty  f a c t o r  i n  the  
incorporation of short  length f ibe r s  i n  
the  matrix (i.e., the  or ientat ion 
not have t o  be controlled so care 
Another itnportant point is  that, sance 
the  strength of the  composite (crc) 
would increase with increasing volume 
percent of the f ibers ,  the c r i t i c a l  
angle would become less i f  the volume 
percent of t he  f ibe r s  were increased i n  
a composite. 
volume percent f i b e r  composite where 
the  matrix would be weak when used a t  
elevated temperatures, orientation of 
%he discontinuous f ibe r s  would have t o  
be very careful ly  controlled. To bet-  
ter  appreciate the  seriousness of the  
orientation problem, note the  photo- 
graph of the shew f a i l u r e  specimen 
versus the t e n s i l e  f a i l u r e  specimen 
shown in  the  figure 6. 

rupture or stress-rupture conditions, 
one might not ant ic ipate  t h a t  law-of- 
mixture relationships would apply. A 
program has recently been compLeted t o  
b e t t e r  understand creep-failure or 
strengthening mechanisrhs of composites 
(8).  

rup.f;ure l i f e  and creep rates were based 
on several  assumptions. For example: 
[l) the  s t r a i n s  i n  the  f ibe r  and t h e  
matrix were assumed equal t o  each other 
i n  a composite and equal t o  t h a t  of the  
composite; (2)  t he  f i b e r  area f rac t ion  
plus the  matrix area f rac t ion  a re  equal 
t o  the area of the  composite, which is  
taken as  unity; (3) composite orienta- 
t i o n  is  uniaxial, i n  a direct ion pmal-  
l e1  t o  the  axis of the specimen; and 
(4) t ha t  both consti tuents i n  the com- 
posite would f a i l  by a t e n s i l e  ra ther  
than shear mechanism. The components 
of the composites, again, a r e  copper 
and tungsten which are insoluble i n  
each other. Both creep-rupture and 

For a discontinuous high 

Final ly  i n  considering creep- 

A s  w a s  the case f o r  t he  t e n s i l e  
‘model system studies, the  stress- 

stress-rupture behavior w e r e  studied t o  
relate the  properties of the  compos 
t o  those of t he  components, fiber a 
matrix. The creep portion w i l l  be de- 
scribed first. If the  equilibrium of 
forces i n  such a composite is consid- 
ered, the  s t r e s s  d i s t r ibu t ion  on the  
components could be expressed by the  
equation 

b 

a t  a given creep rate ei 

where 

cr stress on each component 

A 

6 secondary creep r a t e  

r e l a t ive  area of each component 

c composite 

f f i b e r  

m matrix 

From the  above assumptions, a general 
equation shown i n  equation (5) w a s  de- 
rived . 

where (5 is  stress on one component 
tes ted  individually, and subscript o 
denotes the  stress required t o  give a 
creep r a t e  of 1 percent per hour, @ is 
slope of log stress - log creep r a t e  
curve. 

l a ted  that the  creep rate of composites 
may be predicted by an exponential form 
of the  law-of-mixtures equation. The 
experimental data obtained t o  ver i fy  
the equations i s  given i n  f igure 7. 
For constant creep rates ,  the composite 
strength increases as a s t r a igh t  l ine.  
By enlarging the lower parts of t h i s  
curve as i n  figure 8, it can be shown 
tha t  the lower portions of the curve 
extrapolate t o  stress values equivalent 
t o  those f o r  the creep r a t e s  of the 
pure material comprising the  matrix. 
For material  such as  those i n  the  com- 
posites with widely diverging proper- 

From t h i s  analysis, it w a s  postu- 
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t i e s ,  the stresses f o r  given creep rates 
of composites obey a law-of-mixture re-  
lationship.  A s i m i l a r  re la t ionship is 
t r u e  fo r  stress for ' ruptuke versus vol- 
ume percent f iber< for giveh times of 
rupture lige.' Several e tpat ions 'with 
varying degrees of complexity were de- 
veloped. A simplified equation from 
R e f .  8 permits%h6 uSe of stress-rupture 
data for f i b e r  and matrix materials t o  
calculate the s t rength bf the composite. 
In  t h i s  case, the  stresses fo r  a given 
rupture t i m e  of the fiber and the  matrix 
can be related by 

The analysis of t h i s  equation would be 
similar to t ha t  presented previously fo r  
the calculation of the creep rate .  A 
l inear  re la t ion  exists between composite 
stress and fiber content, w i t h  t he  ' 

s t r e s s  on each component, f o r  a given 
rupture t i m e ,  as the end points of the 
s t r a igh t  l ine .  Equation (6 )  can be ex- 
panded to a more general form similar to 
equation (5) (8).  The qualifying as- 
sumptions to ar r ive  a t  t h i s  type of 
equation f o r  a stress-rupture s i tua t ion  
were somewhat more numerous than those 
for t h e  creep data. On the  other hand 
stress-rupture data are  f a r  more readi ly  
obtainable than is creep data and f a r  
more eas i ly  used i n  designing prac t ica l  
Composite materials. The main precau- 
t ions,  of course, are t h a t  inany factors  
such as lack of compatibility between 
materials, lack of bonding, or other 
problems, might cause deviations from a 
law-of-mixtures type of prediction. 

"his brings us to consideration of 
compatibility problems which we have in- 
vestigated to some degree w i t h  model 
systems. A complete lack of reaction 
between fiber and matrix, either during 
fabricat ion of the composite or during 
the service l i f e  of the composite would 
be desirable. However, since most prac- 
tical materials react to some degree, 
techniques to minimize the e f f ec t s  of 
incompatibility a r e  necessary. Varia- 
t ions  of fabr icat ion pTactice have been 
explored to minimize t h a t  portion of 

composite incompatibility. Several fab- 
r ica t ion  methods have been used f o r  com- 
posite materials; l iqu id  state i n f i l t r a -  
t i on  or so l id  state s in te r ing  of t he  ma- 
t r i x  about the fibers a re  two examples. 
Powders may be consolidated about the 
fibers by various means such as  s l i p  
casting and sintering, diffusion bond- 
ing, explosive deformation and many 
other methods. I n  any case, many 
methods of consolidation require a rela- 
t i v e l y  high temperature t o  fabricate  We 
composite. This subjects t he  fiber t o  a 
potent ia l ly  degrading process. Ini-  
t i a l l y ,  the e f f ec t  of compatibility of 
materials on cothposite t e n s i l e  s t rength 
has been studied a t  NASA by using copper 
base a l loy  matrix materials and tungsten 
fibers (9 ) .  Work was done using ii l t q -  
uid phase i n f i l t r a t i o n  process. A l u m i -  
num, chromium, cobalt, columbium, nickel, 
titanium, and zirconium were added to 
the  copper to determine the i r  mode of 
reaction w i t h  tungsten fibers. They 
were added i n  percentages as  high a s  
possible which would permit the same 
temperature of i n f i l t r a t i o n  to be used 
about tungsten fibers as was use; i n  the 
case of pure copper, namely 2200 F f o r  
1 hour i n  a vacuum atmosphere. Fig- 
ure 9(a) shows pbotovicrographs of t he  
cross sections of tungsten f ibe r s  i n  pure 
copper matrix. Note tha t  there is  no re- 
c rys ta l l iza t ion  or  peripheral damage on 
the surfaces of the  fibers. The tungsten 
fibers were damaged when nickel  w a s  added 
to t h e  copper matrix. The damage is 
shown i n  f igure 9(b) i n  t h e  form of a re- 
crys ta l l ized  zone on the  periphery of the 
f iber .  Composites w i t h  fibers containing 
a zone l i k e  t h i s  w e r e  considerably weaker 
than those i n  which no recrys ta l l iza t ion  
or penetration of t h e  fiber occurred. A s  
the  penetration distance increased, t h e  
strength decreased rather dras t ica l ly .  
It w a s  postulated tha t  t he  d ra s t i c  de- 
crease was due to an embrit t l ing of t h e  
f ibe r s  by the  recrystal l ized layer on the  
periphery. Once t h e  b r i t t l e  layer  on 
each fiber was large enough to form a 
crack of a c r i t i c a l  size,  the crack could 
propagate through the  notch-sensitized 
fiber and catastrophically damage the 
composite. Other types of reaction have 
been observed a t  peripheries of fibers 
and, i n  the  matrices surrounding t h e  
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fiber. 
t ies of the composites. Similarly other 
investigators have observed that b r i t t l e  
phases that form on the surface of a 
fiber such as intermetal l ic  compounds, 
cause a similar degradation of the com- 
posite. It w a s  found t h a t  b r i t t l e  zones 
about the  fibers a re  less degrading when 
the composites are u t i l i z e d  a t  temgera- 
tures above the duc t i le  t o  b r i t t l e s t r a n -  
s i t i o n  temperature of t he  f ibers .  
t h e  degradation t h a t  occurs i n  fibers as 
a r e su l t  of reaction is not catastrophic 
and can be tolerated,  the s i tua t ion  is 
similar t o  tha t  which occurs i n  a normal 
a l loy  i n  which losses of properties oc- 
cur w i t h  t i m e  and temperature. 

pleted is the  study of i n t e r f ibe r  dis-  
tance and temperature on the c r i t i c a l  
aspect r a t i o  i n  composites ( L O ) .  Sev- 
eral mechanisms r e l a t ing  cokriposite 
strength t o  increased matrix strength 
are given i n  the l i t e r a tu re .  
these a re  work hardening, r e s t r a i n t  of 
the matrix, and Poisson r e t i o  e f fec ts  
(4, 11, and 1 2 ) .  We investigated the 
e f fec ts  of i n t e r f ibe r  distance on the  
strength of composites by studyihg the 
c r i t i c a l  lengths or aspect r a t i o s  of 
fibers using pull-out tests (LO).  
u t i l i zed  specimens such as tha t  shown i n  
figure 10. The specimen consisted of a 
button and fiber of one material  and a 
matrix between the fiber and the button. 
The distance between the f i b e r  and the 
button could be varied by varying t h e  
s ize  of the hole dr i l led  i n  the button. 
A s  shown i n  the figure, the thickness of 
the button controlled the shear length 
of the fiber-matrix interface and m s  
designated L.. With a button thickness 
(equivalent t o  shear length of the  
fiber-matrix interface)  less than the 
c r i t i c a l  length of the  fiber, the f i b e r  
would p u l l  out of the matrix i n  a ten- 
s i le  test. Whereas, 'with increased 
button thickness, when the c r i t i c a l  
length w a s  equalled or exceeded, the 
w i r e  fractured (see f ig .  11). Tests t o  
hetermine in te r f iber  distance e f f ec t s  
were conducted a t  room temperature 
using iron fiber-cadmium matrix and iron 
fiber-lead matrix composites. In  addi- 
t ion,  t he  e f f ec t s  of temperature on t h e  
c r i t i c a l  aspect r a t i o  f o r  a constant in- 

These a l so  lowered the  proper- 

If 

Another type of study recently com- 

Typical of 

We 
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t e r f i b e r  distance were determined using 
tungsten fibers i n  a copper matrix. 
Figure 1 2  shows a typ ica l  curve obtained 
fo r  iron fiber-lead specimens. The 
f a i l u r e  load f o r  a number of specimens 
is  plotted against the aspect ra t io .  
The failure mechanism changes from shear 
of t h e  matrix to a t e n s i l e  failure of 
the fiber a t  an aspect r a t i o  of approxi- 
mately 6 f o r  a 1 m i l  i n t e r f ibe r  distance. 
Curves such as those of f igure  1 2  were 
used to obtain the c r i t i c a l  aspect 
r a t io s  resul t ing from variations of in-  
t e r f i b e r  distances from 0.1 t o  5 m i l s .  
A cross p l o t  of c r i t i c a l  aspect r a t io s  
versus in t e r f ibe r  distance is shown i n  
f igure 13. Data such as  t h i s  can be 
used to calculate the shear strength of 
the matrix fiber interface a s  it relates 
t o  in t e r f ibe r  distance. Figure 14  shows 
a change i n  shear s t rength of the  lead 
and cadmium matrix re la ted  t o  in t e r f ibe r  
distance. The calculated shear strength 
of t he  lead was increased by 825 psi 
w h i l e  the cadmium was increased by 
900 ps i  when the  IFD was decreased 
5 m i l s  t o  0.1 m i l .  Thus f o r  decreasing 
in te r f iber  distances the  shear strengths 
were increased. 

t u re  on the  c r i t i c a l  aspect r a t i o  of 
fibers i s  portrayed i n  f igure 15 fo r  the  
tungsten wire-copper specimens. It is 
evident that  the  c r i t i c a l  aspect r a t i o  
increases very d ra s t i ca l ly  as t h e  t e m -  
perature increases, which would be ex- 
pected from the r e l a t ive  decrease i n  the 
shear s t rength of t h e  matrix with re- 
spect to the  s t rength of the  r e l a t ive ly  
s tab le  fiber material a t  the test  tem- 
peratures used. 

The e f fec t  of increasing tempera- 

FIBER REINFORCED SUERALLOYS 
~~ 

The concept that fiber reinforced 
composites could be ta i lored  t o  do dif-  
fe ren t  jobs has been discussed for  some 
time. I n  R e f .  13 a description of 
t a i l o r  making a composite was given f o r  
the u t i l i z a t i o n  of high melting point 
fibers i n  a low melting point. Fig- 
ure 16  shows a schematic i l l u s t r a t i o n  
tha t  aids i n  understanding haw a high 
melting point fiber, such as  a refrac- 
to ry  metal or a ceramic, could operate 
a t  a f rac t ion  of i t s  melting point i n  a 



matrix superalloy. L i t t l e  degradation 
. of properties would occur if t h e  fibers 

did not react  w i t h  the  matrix. Such ma- 
terials would be expected to have unusu- 
a l l y  good high temperature strength. It 

‘ was shown i n  model systems s tudies  such 
as tha t  of R e f .  8 that a t  1500° F tung- 
s ten  f ibe r s  i n  a copper matrix could 
have unusually good 100 hour stress- 
rupture s t rength i n  comparison with com- 
mercial superalloys such as Renee 41 and 
SM 200. One of the e a r l i e s t  avai lable  
high strength tungsten w i r e  was  GE mate- 
r ia l  218 C.S. This w a s  t he  material ’ 

that w a s  used f o r  the bulk of our model 
systems studies.  In the  stress-rupture 
study of t h i s  material  (14), it was 
found tha t  t h i s  material had an exceed- 
ingly high strength i n  stress rupture a t  
temperatures as  high as  2500° F. 
stress f o r  100 hour stress rupture l i f e  
curve is plotted i n  figure 1 7  against  
test  temperatures up t o  2600’ F. 
tungsten w i r e  is superior not only t o  
superalloys by a considerable amount but 
a l so  t o  other refractory metals some of 
which ere exceedingly strong. Consider- 
ing the  l e f t  hand portion 09 t he  figure, 
it would be obvious t h a t  i f  these tung- 
s ten  fibers were embedded i n  matrices of 
the superalloys indicated a l so  i n  the 
figure, the composite t ha t  would restilt 
would have a s t rength i n  betveen t h a t  of 
the tungsten fiber and the matrix, as- 
suming that t he  matrix did not catastro- 
phically damage the  fiber. The law-of- 
mixtures held f o r  mutuafly insoluble 
copper and tungsten syGtems; however, 
reactions between fibers and metal ma- 
t r i x  may occur i n  prac t ica l  materials 
during fabricat ion and use, if the use 
temperature is high enough. Even ther- 
modynamically s table  materials such as  
highly refractory oxides may react  with 
metall ic matrices. Diffusion of metgl- 
l i c  materials i n t o  the oxide as w e l l  as 
dissolution of the oxide i n  the matrix 
are possible. For high temperature ma- 
ter ia l  applications most material com- 

- binations of metal f ibe r  and metal ma- 
t r i x  have consti tuents which dissolve 
3nto each other. Composites with”ex- 

p i t e  the dissolution or reaction with 
metal matrix materials. Control of 

’ 

A 

The- 

3 ce l len t  properties a re  possible dis-  

hatrix-f iber  ineompaWbi 
required t o  achieve t h i s  excellent’  po- 
t en t  i a l  . 

One of the in t e re s t s  of the  Lewis  
Research Center has been the production 
of material f o r  possible advanced gas 
turbine applications. I n  particular,  ’ 

t h e  turbine bucket and t h e  nozzle vanes 
have been considered as important mate- 
r i a l  problem areas and as such materials 
fo r  these components are desired. Fiber 
reinforced superalloys would be a logi-  
c a l  candidate f o r  these components, par- 
t i c u l a r l y  f o r  the turbine bucket. 
f o r t s  have been undertaken t o  study 
fiber reinforced superalloys f o r  poten- 
t i a l  use as air-breathing engine compo- 
nents a t  temperatures of 2000’ F and 
above. Also, contracts have been 
awarded by the  Lewis  Reskarch Center, t o  
produce improved refractory metal a l loy  
wires f o r  use as  reinforcement of super- 
alloys.  

Other investigators have produced 
composite materials w i t h  very high 
stress rupture strength. For example, 
t h e  National Gas Turbine Establishment 
i n  Great Bri ta in  has produced fiber re- 
inforced superalloys [15), some of which 
obey the law-of-mixtures relationships,  
and which have very good strength. 
Their  method of fabr icat ion was l iqu id  
i n f i l t r a t i o n  about bundles of fibers. 
The Clevite Research Center (16) has 
a l so  produced fiber reinforced superal- 
loys by a powder metallurgy technique. 
In  both cases re la t ive ly  conventional 
superalloy compositions were used for 
t he  matrix materials. I n  the case of 
the Clevite work, f o r  example, such al- 
loys as Hasteloy X were powdered and 
used as a matrix. I n  both of these 
cases the  volume percent of the  fibers 
were no greater than 50 volbme percent 
and i n  most cases the specimens had per- 
centages ranging up to 30 volume percent. 
In work under way a t  the  L e w i s  Research 
Center, an approach to produce high vol- 
ume percent composites and to vary both 
the matrix composition and t h e  fiber 
composition w a s  u t i l i z e d  (17 ) .  Although 
some early compatibility s tudies  were 
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gree combinations of 
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known to what de- 
elements would 
t h e  fibers embedded 
materials, nickel  



and cobalt, two of the  chief high t e m -  
perature a l loy  matrices, were known to 

ade the  properties of t he  
rs embedded i n  them. On 

the  other band, chromium and other mate- 
r ia ls  l i k e  zirconium and titanium, i n  
small quan%ities, were f e l t  to degrade 
the  f i b e r  materials only s l igh t ly .  The 
matrix compositions were selected based 
on a potent ia l  f o r  good compatibility 
re la t ionships  and on var ia t ions of duc- 
t i l i t y  of She matrix materials. 
shows the  emgosi t ions of t he  al loys 
u t i l i zed .  The most simple composition 
used, Alloy I, contained only the  so l id  
solution elements chromium and tungsten 
i n  a nickel  matrix. Alloy No. 5 w a s  
a l s o  largely a so l id  solut ion type al-  
loy containing chromium, columbium, 
tungsten, qolybdenum, and tantalum and 
no intermetal l ic  compound precipi ta tes .  
This type QT composition is known to be 
very duc t i le  and is  generally the  bas i s  
f o r  some types of high temperature al- 
loys. 
bearing mo6ifications of the  above al- 
loys, Allogs 3 and 7, had low and high 
percentages of titanium and aluminum 
respectively. These a l loys  w e r e  ex- 
pected to contain y' and possibly T, 
both of whlch would increase matrix 
strength an4 re ce t h e  r eac t iv i ty  of 
nickel. The fa  t h a t  aluminum was 
added to each of these materials per- 
mitted the  reduction of the  chromium 
content of %he materials to get some ox- 
idat ion resXktance. It was f e l t  t h a t  
t h i s  composZTXona1 range would give a 
clue as  to some of the  fac tors  pertain- 
ing to the  s t a b i l i t y  of the  tungsten fi; 
bers i n  t h e  ma-trfx as  w e l l  as to one Mo- 
lybdenum filaer alloy. The w i r e  materi- 
als t h a t  weFe used were: TZM ( 0 . 5  per- 
cent T i ,  0.08 percent Z r ,  0.015 percent 
C, bal .  Mo), KF (tungsten-1 percent 
thor ia ) ,  3D tungsten-3 percent rhenium), 
and 218 C.S. (commercial tungsten). I n  

experiment was to evaluate 
coMposite compatibility when matrix com- 
positions, fabr icat ion practices, w i r e  
s i z e  and w i r e  compositions were varied. 
Some of the  e f f ec t s  of these variables 
w i l l  be described. The f irst  approach 
was to u t i l i z e  8 m i l  w i r e  as a f i b e r  re- 
inforcement. These w i r e s  w e r e  f irst  
given compatibility-studies f o r  t i m e  
periods of 100 hours a t  a temperature of 
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2000' F i n  t h e  various matrices. 
composites were compacted by s l i p  cast-  
ing and fabricat ing them by s in te r ing  a t  
2000° F f o r  1 hour i n  dry hydrogen. 
This treatment a l s o  drove off t he  s l i p  
cas t  medium and presumably reduced some 
or most of t he  nickel  and chromium 
oxide f i l m s  present on the  surfaces of 
the powder. Examples of some of the 
diffusion and recrys ta l l iza t ion  zones 
produced on the  periphery of t he  f i b e r  
are shown i n  f igure  18. The var ia t ion 
i n  r eac t iv i ty  of t he  four matrix mate- 
r ials with 218 C.S. w i r e  is i l l u s t r a t e d  
by the  four outer photos. The complete 
reaction of TZM molybdenum fiber with 
a l l  matrix compositions is  typ i f ied  by 
the  center photo. The two so l id  solu- 
t fon matrix alloys, Alloys 1 and 5 
(which did not contain T i  or A l )  were 
more react ive with t h e  fibers than were 
the  matrices containing T i  and A l ,  
namely Alloys 3 and 7. Alloy 3 was con- 
sidered the  most compatible matrix with 
the  fibers. The compatibility was indi- 
cated by the  depth of penetration meas- 
urements of the  recrystal l ized-  
penetration zone. Relative to w i r e  corn- 
positions, t he  materials 218 C.S., which 
is the  r e l a t ive ly  pure tungsteq f iber  
with some doping and the  3 D w i r e  which 
contained 3 percent rhenium were more 
compatible with the  al loys than were the  
other w i r e  materials investigated. A s  a 
r e s u l t  of the  compatibility studies,  the  
218 C.S. w i r e  and the  3 D w i r e s  were 
u t i l i z e d  i n  the  i n i t i a l  stress-rupture 
studies. Some of t he  stress rupture re- 
s u l t s  obtained with fibers embedded i n  
the  various matrices fabricated using 
the  i n i t i a l  fabr icat ion process are 
shown i n  f igure  19. This f igure shows 
the  volume percent of f i b e r  needed t o  
produce a given t i m e  to rupture f o r  a 
stress condition of 15,000 ps i  a t  
2000° F. Stress-rupture properties 
were re la ted  to compatibility. Because 
of t he  high percentage of reaction of 
the area of the  8 m i l  fibers, it was 
f e l t  t h a t  several corrective treatments 
could be u t i l i z e d  to improve the  proper- 
t i es  of t he  composites. One of these 
w a s  to modify the  s in t e r ing  procedure 
u t i l i z e d  i n  the  fabricat ion of t he  com- 
posites. 
ing t h e  materials a t  1500° F f o r  1 hour 
i n  dry hydrogen ra ther  than 2000O F, as 

The 

This was done by f irst  s in te r -  



w a s  done i n i t i a l l y .  Densification w a s  
accomplished i n  an i s o s t a t i c  hot press- 
ing uni t ,  again first u t i l i z i n g  1500' F 
f o r - 1  hour and then 2000° F f o r  1 hour 
under helium pressure of 20,000 psi. 
The second modification i n  the  approach 
was made by the  use of larger s i z e  f i -  
bers. NegTecting f o r  a moment t h e  as- 
pect of changing the  fabricat ion pro- 
cedure and considering only the  aspect 
of varying t h e  diameters of t he  f ibers ;  
it should be evident t h a t  a large f i b e r  
with a given diffusion penetration type 
of damage would be damaged less than a 
small fiber. Thus, f o r  example, an 
8 m i l  w i r e  with a 2 m i l  penetration zone 
would have 75 percent of the area of the  
f i b e r  damaged t o  some degree by the ?=e- 
action while the same penetration on a 
20 m i l  f i b e r  would only be 36 percent of 
the f i b e r  t h a t  would be damaged. On the  
other hand, the  larger  diameter f ibe r s  
usually are not as strong as the  smaller 
diameter f ibe r s  i n  stress-rupture or i n  
high temperature t e n s i l e  values. There- 
fore ,  the  two of these fac tors  have t o  
be balanced. Figure 21) shows a graphi- 
cal  method used t o  i l l u s t r a t e  schemati- 
c a l l y  how the  composite s t rength varies 
with w i r e  s i z e  and depth of the  reaction 
f o r  d i f fe ren t  material. The stress on a 
reacted fiber f o r  a rupture l i f e  of 
100 hours is plot ted against  the  reac- 
t i o n  depth of t he  f i b e r  f o r  varying w i r e  
diameter. The plot  shows t h a t  f o r  re- 
act ion depths less than approximately 
1 m i l ,  t he  8 m i l  w i r e  is  stronger than 
€he other w i r e  sizes.  A t  th icker  reac- 
'cion depth t h e  larger  diameter fibers 
are stronger, This i s  consistent with 
r e su l t s  obtained on composites contain- 
ing various w i r e  diameters. 
composite properties were obtained using 
15 m i l  diameter wires and the  modified 
fabricat ion technique. The properties 
obtained are shown i n  figures 2 1  and 22. 
Figure 2 1  shows the  rupture s t rength 
versus test  temperatures f o r  100 and 
1000 hours of f i b e r  reinforced compos- 
ites containing 70 volume percent f i -  
bers  with a l loy  3 %he most compatible 
matrix and with e i the r  the  218 C.S. or 
NF f ibe r s  as w i r e s .  The composites con- 
ta in ing  the  high volume percent f i be r s  
have strengths f o r  100 and 1000 hours a t  
2000° F which are several times higher 
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than those properties f o r  the  best cast 
N i  a l loys shown f o r  comparison. This i s  
t rue  on a s t rength t o  weight r a t i o  also. 
The properties of t he  composite are com- 
pared i n  figure 22 with those typ ica l  of 
the best cas t  nickel  superalloys such as 
M22 or NASA-TRW V I  A. 
over twice as strong i n  s tms  densiiEy 
f o r  rupture i n  1000 hours a t  2000° F. 
Some of t he  conclusions reached i n  the  . 
investigation are believed t o  be equal 
or more important than the  s t rength ob- 
tained. F i r s t  it is evident t h a t  fibers 
without coatings can be u t i l i z e d  i n  a 
prac t ica l  matrix t o  produce useful  com- 
posites. In  t h i s  investigation as much 
as 90 percent of t he  strength of fibers 
w a s  u t i l i z e d  i n  a composite exposed t o  
100 hours a t  2000° F i n  contact with a 
prac t ica l  superalloy matrix. Secondly, 
the r eac t iv i ty  of t he  f i b e r  and t h e  m a -  
t r i x  could be varied by varying the  com- 
posit ions of the  alloying elements i n  
e i the r  of the  two consti tuents of t h e  
composite. I n  t h i s  case high W and C r  
with titanium and aluminum additions t o  
the  superalloy matrix seemed t o  be bene- 
f i c i a l .  Depending on operating t i m e  
w i r e  diameters were found t o  be impor- 
tan t .  Small diameter wires with t h e i r  
superior s t rength may be superior t o  
larger  wires fo r  short  t i m e  high temper- 
a ture  operations or f o r  lower tempera- 
t u r e  applications. Larger diameter w i r e  
was  superior t o  smaller diameter w i r e  
f o r  long time operations a t  high temper- 
atures because the  property degradation 
occurred by peripheral reaction with 
larger  w i r e  caused a lesser percentage 
of t he  gross w i r e  cross section t o  be 
damaged. Finally, t he  fabricat ion prac- 
t i c e s  used t o  consolidate and form'the 
composites can cause a considerable ww- 
i a t i on  i n  t h e  properties of the  mate- 
rials. This lat ter information can be 
obtained i n  more d e t a i l  from the  or i -  
g ina l  R e f .  17. 

It was mentioned previously t h a t  
contract work t o  produce higher s t rength 
refractory mletal a l loy  fibers w a s  under- 
taken under Lewis Research Center spon- 
sorship. Some of these materials pro- 
duced i n  the  form of f i b e r s  had bulk ma- 
ter ia l  properties t h a t  were very inter-  
esting. The composition of the  w i r e s  
produced f o r  the  f irst  series of s tudies  

The composites a r e  



is  indicated i n  figure 23  which shows 
100 .hour stress-rupture l i ves  of the 
various refractory w i r e s  tested a t  ZOOOO 
and 2200° F (18). 
same data on a s t rength to weight r a t i o  
bas i s  is given i n  figure 24. Many of 
the materials t h a t  were tested have ad- 
equate s t rength to weight r a t i o s  t o  re- 
inforce a superalloy matrix. The high- 
est strength t o  weight r a t i o  material 
indicated is the tungsten w i t h  2 percent 
Tho2 dispersoids embedded i n  the matrix. 
If t h i s  material were embedded i n  a 
superalloy matrix, properties t ha t  are 
shuwn i n  the next figure 25 could be 
obtained. This figure shows 100 hour 
stress rupture s t rength and spec i f ic  
s t rength or strength to weight r a t i o  
f o r  100 hour rupture l ife.  For compmi- 
son, properties t yp ica l  of t h e  best cast 
nickel  base alloys,  and TD-Ni, a disper- 
sion strengthened material, are shown. 
The strength of the present 70 volume 
percent composite t h a t  w a s  obtained 
(from Ref. 17)  and the improved compos- 
i t e  tha t  could be obtained with the 
w i r e s  or fibers j u s t  described are a lso  
shown. New fiber materials are now 
under study. It is  expected tha t  some 
of these w i l l  have even higher strength 
to weight r a t i o s  than those shown pre- 
viously. 

Another p lo t  of the  

WHISKERS 

Whiskers have inci ted greater  in- 
terest because of t h e i r  unusually high 
s t rength and high temperature stabil- 
i t y .  .It would be desirable t o  have 
very stable whiskers such as ceramics 
w i t h  very large length to diameter 
r a t i o s  (L/d) for reasons t o  be described 
subsequently. High s t rength whiskers 
w i t h  large L/d r a t i o s  are avai lable  i n  
the form of wool or mats, The first 
problem associated w i t h  the use of these 
whiskers is the separation of discrete, 
useful, whiskers from the  mat. The min- 
i m u m  L/d r a t i o  desired f o r  whiskers 
f o r  high temperatures creep-rupture use 
is estimated t o  be on the order of 500/1 
or more. This value of 500/1 i s  based 
on several  assumptions, t ha t  the creep 
shear s t rength of t h e  matrix and the 
creep-rupture strength of t h e  whiskers 
are known or can be approximated from 
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known strengths. Further it must be as- 
sumed tha t  a good bond between t h e  fiber 
and t h e  matrix exists so that p u l l  out 
of t h e  whiskers from t h e  matrix would 
depend on the shear s t rength of the  ma- 
t r i x .  Actually, t h i s  is one of the main 
problems asdociated w i t h  embedding 
whiskers i n  a p rac t i ca l  matrix, namely, 
tha t  it tends not t o  bond w e l l  w i t h  t h e  
matrix. A poor bond would tend t o  in- 
crease the required length t o  diameter 
r a t i o  to u t i l i z e  t h e  f u l l  whisker 
strength. Additionally, a large L/d 
r a t i o  would be desirable t o  promote bet- 
t e r  or ientat ion during the fabricat ion 
of the  composite. 
used technique t o  obtain usable whiskers 
from the m a t s  is to separate them w i t h  
the use of a blender. This normally 
produces whiskers tha t  are of the order 
of 25/1 t o  l O O / l  which are less than 
those desired f o r  high temperature use. 
Most of the investigation done w i t h  the  
short  length whiskers were bonding stud- 
ies which can be done adequately w i t h  
whiskers of less than the maximum opti-  
mum L/d ra t ios .  Room temperature 
properties were obtained from most of 
these s tudies  where short  lengths are 
adequate to reinforce the  matrix mate- 
rials. 

To appreciate t h e  minute sizes and 
the  d i f f i c u l t i e s  associated w i t h  han- 
dl ing such f i n e  par t ic les ,  consider t h e  
f a c t  t ha t  a 500/1 L/d whisker, w i t h  a 
2 micron diameter, would be 0.04 inch 
long. Materials such as graphite fi- 
bers, which normally are approximately 
8 microns i n  diameter, would be 
0.16 inch long which is a t  least more 
vis ible .  
diameter boron fiber chopped t o  500/1, 
the  fiber length would be 2 inches. We 
have obtained mats of alumina and s i l i -  
con carbide whiskers and are beginning 
to invest igate  techniques f o r  separating 
adequately s ized whiskers from the mats. 

The most commonly 

If you were t o  use a 4 m i l  

POLYCRYSTALLINE CERAMTCS 

S t a b i l i t y  at  high temperature i n  a 
matrix is  the primary reason for desir- 
ing ceramic fibers f o r  high temperature 
composites. Polycrystall ine ceramic f i -  
bers considerably larger than whiskers 
i n  diameter i n  spoolable lengths would 



be most desirable. From a s i z e  stand- 
poimt alone la rger  diameter materials 
would be inherently stable relative t o  
very f ine  products. Two types of s-- 
b i l i t y  t ha t  should be considered are one 
based on thermodynamic considerations 
and the  other on resis tance of t he  f i -  
bers to mechanical property degradation. 
Polycrystall ine ceramics i n  fiber form 
have been shown t o  be superior i n  
strength to bulk ceramics but  not as ' 

strong as the  nearly perfect s ingle  
c rys t a l  whiskers. Some of the b r i t t l e  
materials such as boron, graphit9, &d 
alumina which have been made i n  fiber 
form have strengths i n  t h e  range of 
300,000 to 500,000 psi .  
have been made i n  larger sizes than 
whiskers and i n  continuous lengths. N o  
sa t i s fac tory  process has been developed 
t o  produce refractory oxide materials 
which are of the greatest  i n t e re s t  f o r  
f iber reinforced superalloy applica- 
t ions.  Fibers that  have been produced 
have not been of consistent qua l i ty  f o r  
high temperature reinforcements. We 
are approaching t h i s  problem from two 
directions.  The first is  by attempting 
to elongate and extrude ceramics i n  me- 
t a l l i c  matrices to lengths adequate for 
fiber reinforcement. The second is t o  
promote by contractual e f f o r t s  t he  de- 
velopment of other methods to produce 
continuous polycrystall ine ceramic f i -  
bers. I n i t i a l l y ,  our in-house e f f o r t  
consisted of elongating several oxide 
and ceramic powders i n  a matrix of tung- 
sten. This work was published i n  refer- 
ence 19. L/d r a t i o s  of as much as 29/1 
were obtained f o r  t h e  oxide ZrOZ and 
18/1 f o r  hafnium ni t r ide .  Later a se- 
ries of widely d i f fe ren t  'types of oxides 
were embedded i n  matrices of colurpbium 
and tantalum and extmded a t  d i f fe ren t  
r a t i o s  and d i f fe ren t  temperatures (20). 
L/d r a t i o s  of as much as 19/1 w a s  ob- 
tained f o r  ZrOZ i n  &. I n  the  latest 
paper U O ~  w a s  elongated i n  a tungsten 
matrix and an L/d r a t i o  equivalent of 
150/1 was obtained (21). I n  a l l  of the 
preliminary studies strengthening in- 
creases which were obtained f o r  the com- 
posites r e l a t i v e  to the pure metals 
could not be proved to r e s u l t  so le ly  
from fiber reinforcement by the  elon- 
gated ceramics. The importance of these 
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s tudies  w a s  t ha t  the f e a s i b i l i t y  of 
elongating these highly refractory 
oxides was demonstrated. Several fac- 
t o r s  associated w i t h  the elongation of 
these types of materials were noted. 
F i r s t ,  it w a s  determined t h a t  higher 
temperatures were needed to soften the 
ceramic materials, bu t  matrix s t i f f n e s s  
was a l s o  needed. It w a s  fe l t  t h a t  the 
elongation process involved a shearing 
of the ceramic i n  the  matrix of t he  ma- 
terial .  This  suggested t h a t  a high 
shear s t rength matrix ( a t  high tempera- 
t u re )  was desirable. It w a s  a l s o  f e l t  
that larger pa r t i c l e s  would elongate to 
a greater  degree than f i n e r  par t ic les .  
To evaluate these concepts, some manipu- 
la t ions  of the extrusion process have 
permitted us to produce fibers such as 
those shown i n  figure 26. Several f i -  
bers were over 1 inch long. A s  soom as 
possible we intend to obtain room and 
elevated temperature strengths of these 
materials. 

been to exploi t  the methods developed 
and to attempt to extrude several  ce- 
ramic materials by a multiple extrusion 
process. 
by t h e  Whittaker Gorp. w i t h  a goal of 
elongating the  ceramics and removing 
them from the  matrix f o r  subsequent use. 
Other methods are being explored to pro- 
duce refractory oxide fibers. The first 
contract  which was i n i t i a t e d  3 years ago 
involved t h e  expulsion of a l iqu id  oxide 
through a small diameter or i f ice .  The 
main problem associated w i t h  t h i s  method 
w a s  the  tendency f o r  the je t  of l iqu id  
oxide t o  break up i n t o  droplets rather 
than t o  remain i n  f iber form. The sec- 
ond problem was associated w i t h  t h e  pro- 
duction of porosity i n  t h e  fiber rather 
than a so l id  dense product. Fibers sev- 
eral inches long, of the order of 7 m i l s  
diameter, were produced by the  process. 
Thus t h i s  method w a s  demonstrated f o r  
production of fibers. Properties, how- 
ever, were extremely low. It is  in- 
tended to continue work of t h i s  nature 
on a contractual basis to develop longer 
fibers w i t h  improved properties by the 
same type of method. 
methods are being sought also. 

O u r  most recent contract  work has 

This work is being conducted 

Other promising 

10 



EWRTS 

While we are continuing t o  conduct 
moael system s tudies  t o  fu r the r  develop 
OUT understanding of t he  behavior of 

o s i t e  materials, it is f e l t  t h a t  
i c i e n t  information has been gener- 
t o  warrant t he  development of ma- 

I 

terials with engineering properties.  
It ;is evident from some of t h e  prelimi- 
nary work that it is  feasible t o  pro- 
duce re f rac tory  metal reinforced fiber 
composites of very high s t rength  a t  ele- 
vated temperatures. The higher t he  f i -  
b e r  strength,  t h e  stronger should be 
t h e  composite. To t h i s  end we  are con- 
t inu ing  oak contractual  e f f o r t s  t o  pro- 
auce stronger fibers of such materials 
as tungsten al loys,  dispersion strength- 
ened materials, tantalum al loys,  and 
columbium al loys.  We are a l s o  coninuing 
our e f f o r t  t o  produce stronger ceramic 
types of fibers'. This w i l l  include a 
continuation of our co-reduction method 
f o r  producing ceramics and t h e  s o l i c i t a -  
t i o n  and support of programs t o  develop 
polycrystal l ine ceramic f i b e r s  by novel 
means. Finally,  diffusion barriers are 
of i n t e r e s t  t o  minimize r e a c t i v i t y  be- 
tween the  fiber and t h e  matrix. 
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TABLE I. - SELECTED NICKEL A U Y  ,MATRIX MATERIALS 
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Figure 1. - Ultimate tensi le strengths of tungsten-fiber- 
reinforced copper composites. Diameter of tungsten fibers, 
5 mils (ref. 31. 
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Figure 2. - Tensile-strength - composition diagrams for tungsten- 

(g) Test temperature, 1800" F. 

fiber-reinforced copper composites as funct ion of temperature. 
Continuous tungsten fibers (ref. 5). 
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Figure 3. - Average percent reduction in area against test tempera- 
t u r e  for copper - tungsten fiber reinforced composites. Tungsten 
fiber, 70 volume percent (ref. 5). 
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Figure 4. - Tensile strength as function of fiber content for discon- 
tinuous-tungsten-fiber-reinforced copper composites (ref. 6). 
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Figure 5. - Composite strength as function of fiber con- 
tent and orientation for tungsten-fiber - copper-matrix 
composites with length-diameter ratio of 100 at 1MO" F 
(ref. 6). 
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Fig. 9. - Tungsten fibers in copper alloy matrix; transverse section, as-infiltrated. 
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Section A-A 
(b) Test specimen. 

Figure 10. - Comparison of test specimen and short fiber composite (ref. 10). 
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Fig. 11. - Aspect ratio test specimens. 
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Figure 12. - Failure load and mode at various aspect ratios, 
Ingot iron-lead, room temperature; interfiber distance, 
1.0 mil  (ref. 10). 
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Figure 13. - Observed critical aspect ratio at 
various interfiber distances (ref. 10). 
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Figure 14. - Shear stress on inf i l t rant at various 
interfiber distances (ref. 10). 
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Figure 17. - Stress required for rupture in 100 hours as function of temperature (ref. 14) 
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Figure 19. - Rupture properties of high temperature fabricated composites at 15,000 psi and 2000" F (ref. 17). 
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